
Day 25

Custom data-* Attributes: Storing custom data directly on HTML elements (e.g., data-target).

Canvas API (<canvas>): A drawable region in HTML, used for graphics, animations, and image manipulation.

Metadata (<head>, <title>): Defining document metadata, such as the page title that appears in the browser tab.

Image Fallbacks (onerror attribute): Handling cases where an image fails to load.

Line Breaks (
): Forcing a line break within text.

HTML Concepts

1

2

3

4

5

CSS Concepts
Styling & Layout

box-shadow: Adding shadow
effects to an element’s frame.
visibility: Showing or hiding an
element without changing the
layout.
backdrop-filter: Applying
graphical effects like blur to the
area behind an element.
cursor: Specifying the mouse
cursor to be displayed when
pointing over an element.

Animations & Transitions

@keyframes: Defining the
stages and styles of a CSS
animation sequence.
animation-duration &
animation-delay: Controlling
the timing of @keyframes
animations.
calc(): Performing calculations
to determine CSS property
values.

Selectors & Pseudo-elements

::before & ::after: Creating
pseudo-elements that can be
styled independently of their
parent element.
Attribute Selectors (e.g.,
[href^='#']): Selecting elements
based on the presence or value
of an attribute.

JavaScript Concepts (I)

Date Object: Working with dates and times (e.g., new Date(), getFullYear(), getHours()).

Math Object: Performing mathematical operations (e.g., Math.round()).

Set Object: Storing unique values of any type.

Unary Plus Operator (+): A concise way to convert a value to a number.

try...catch: Handling errors gracefully without stopping script execution.

Number.toFixed(): Formatting a number to a specified number of decimal places.

Language Fundamentals

DOM Manipulation
Element.parentNode: Accessing the direct parent of an element.

Element.getAttribute(): Retrieving the value of a specified attribute on an element.

document.createElement() & Node.appendChild(): Creating new DOM elements and

adding them to the document.

Element.scrollIntoView(): Scrolling a page so that an element is visible to the user.

HTMLElement.offsetTop & window.scrollY: Getting an element’s position relative to the

top of the document and the current scroll position.

JavaScript
Concepts (II)

clearInterval(): Stopping a timer previously set with setInterval().
Throttling: A technique to limit how often a function can be executed, improving
performance for frequent events like scrolling.

Timers & Asynchronous JavaScript

KeyboardEvent Object: Accessing properties of a key press event (e.g., event.key,
event.code).
Mouse Events (mousedown, mouseup, mousemove, mouseover, mouseout): Handling
various mouse interactions.
scroll Event: Detecting when the user scrolls the page.

Events

localStorage API (setItem, getItem): Storing key-value pairs in the browser, persisting
data across sessions.
Drag and Drop API: Implementing native drag-and-drop functionality for elements.
FileReader API: Reading the contents of files stored on the user’s computer.
Canvas API (scripting): Drawing graphics via JavaScript (e.g., getContext("2d"), moveTo(),
lineTo(), stroke()).
history.pushState(): Manipulating the browser session history.

Browser APIs

Reviewing Your Progress

Had an “aha” moment? Share it with the community!

What’s Clicking?

Celebrate your progress — which
concepts now feel intuitive?
Share a screenshot or video of your
favorite project — show your growth!

What’s Still a Blocker?

Revisit your Day 10 Challenge List:
What’s still causing headaches?
Are new, advanced challenges appearing?

Deliberate Practice Still Works

1.Identify one major blocker
2.Dedicate focused time to practicing it
3.Repeat until it clicks

Your ability to troubleshoot and
research is your superpower.

Expanding Your Developer Toolbox
Find, Save, and Use Resources Like a Pro

Small skills compound over time — they build confidence,
problem-solving ability, and autonomy.

Track helpful project resources:
• Icons, images, sound effects, color palettes
• Documentation beyond MDN (e.g., CSS-
Tricks, Stack Overflow, GitHub issues)

The deeper you go, the more essential
resource-hunting becomes:
• Unlock solutions faster
• Create project variations
• Build independence as a developer

